Numerical Algorithms for a Class of Matrix Norm Approximation Problems

نویسنده

  • Caihua Chen
چکیده

This thesis focuses on designing robust and efficient algorithms for a class of matrix norm approximation (MNA) problems that are to find an affine combination of given matrices having the minimal spectral norm subject to some prescribed linear equality and inequality constraints. These problems arise often in numerical algebra, network, control, engineering and other areas, such as finding the Chebyshev polynomials of matrices and fastest mixing Markov chain models. In this thesis, we first apply the popular first-order algorithm alternating direction method (ADM) to solve such problems. At each iteration of the algorithm, the subproblems involved can either be solved by a fast algorithm or admit closed form solutions, which allows us to implement the ADM easily and simply. Unfortunately, numerical experiments on MNA problems reveal that the ADM performs unstably, and it may fail to achieve satisfactory accuracy in reasonable cpu time for some tested examples, especially for the constrained cases. To overcome this difficulty, we also introduce an inexact dual proximal point algorithm (in short SNDPPA) for solving the MNA problems. At each iteration, the inner problem, rewritten as a system of semismooth equations, is solved by an inexact

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix Nearness Problems with Bregman Divergences

This paper discusses a new class of matrix nearness problems that measure approximation error using a directed distance measure called a Bregman divergence. Bregman divergences offer an important generalization of the squared Frobenius norm and relative entropy, and they all share fundamental geometric properties. In addition, these divergences are intimately connected with exponential families...

متن کامل

A Numerical Approach for Fractional Optimal Control Problems by Using Ritz Approximation

In this article, Ritz approximation have been employed to obtain the numerical solutions of a class of the fractional optimal control problems based on the Caputo fractional derivative. Using polynomial basis functions, we obtain a system of nonlinear algebraic equations. This nonlinear system of equation is solved and the coefficients of basis polynomial are derived. The convergence of the num...

متن کامل

An iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint

In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...

متن کامل

Numerical Solution of Delay Fractional Optimal Control Problems using Modification of Hat Functions

In this paper, we consider the numerical solution of a class of delay fractional optimal control problems using modification of hat functions. First, we introduce the fractional calculus and modification of hat functions. Fractional integral is considered in the sense of Riemann-Liouville and fractional derivative is considered in the sense of Caputo. Then, operational matrix of fractional inte...

متن کامل

A Semismooth Newton-CG Dual Proximal Point Algorithm for Matrix Spectral Norm Approximation Problems

We consider a class of matrix spectral norm approximation problems for finding an affine combination of given matrices having the minimal spectral norm subject to some prescribed linear equality and inequality constraints. These problems arise often in numerical algebra, engineering and other areas, such as finding Chebyshev polynomials of matrices and fastest mixing Markov chain models. Based ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012